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Abstract

Machine learning (ML) is becoming capable of transforming biomolecular

interaction description and calculation, promising an impact on molecular and

drug design, chemical biology, toxicology, among others. The first improve-

ments can be seen from biomolecule structure prediction to chemical synthe-

sis, molecular generation, mechanism of action elucidation, inverse design,

polypharmacology, organ or issue targeting of compounds, property and multi-

objective optimization. Chemical design proposals from an algorithm may be

inventive and feasible. Challenges remain, with the availability, diversity, and

quality of data being critical for developing useful ML models; marginal

improvement seen in some cases, as well as in the interpretability, validation,

and reuse of models. The ultimate aim of ML should be to facilitate options for

the scientist to propose and undertake ideas and for these to proceed faster.

Applications are ripe for transformative results in understudied, neglected, and

rare diseases, where new data and therapies are strongly required. Progress

and outlook on these themes are provided in this study.
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1 | INTRODUCTION

Machine learning (ML) and artificial intelligence (AI) are being used in a large variety of fields given improvements in
data science and their strong improvement over other methods in areas such as image recognition and processing. We
are slowly seeing their first steps coming to fruition in medicinal and computational chemistry1 in their new develop-
ment phase. Small and large companies as well as groups in academia are deploying ML for predicting properties,
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reactivities, synthesis of compounds,2 drug targets prediction,3 compound synergy for antimalarials, crop protection,4

among others.
Deep learning (DL) and other learning techniques with the advent of computational power have accelerated ML

development in several fields including new materials5 and computational chemistry.6,7 ML can also play an important
role in the discovery and design of compounds for rare and neglected tropical diseases (NTDs) if there is progress over
other methods and if such a progress is well-applied and understood. There are several advantages and challenges that
are becoming clearer in this fast-growing field.

Arguably, ML has existed in chemistry for a long time in the initial correlations between activity of substances and
their substituents,8 and correlations of reaction rates of chemicals and the physicochemical properties of their func-
tional groups. Indeed, quantitative structure–activity relationships (QSAR), k-nearest neighbor neural networks (kNN),
support vector machines (SVM), and random forest (RF) algorithms have been used in chemistry for several decades
already.8 However, DL has seen an explosion in interest in chemistry given the development of algorithms, computing
power, and ability to use the growing number of chemical and biological data.1,6,7,8

Even the Hammett equation, an early example of QSAR, has been refined by ML by considering a larger variety of
reaction and multisubstitution patterns that were limited in the original equation to a similar core and specific group
and position replacements.9 Hammett parameters ρ and σ for rate constants for benzylbromides reacting with thiols
and ammonium salt decomposition were optimized by global regression in two experimental datasets, as well as in a
synthetic dataset with computational activation energies of 2,400 SN2 reactions with various nucleophiles, leaving
groups (–H, –F, –Cl, –Br) and functional groups (–H, –NO2, –CN, –NH3, –CH3). Mean absolute error rates of around
1.5 kcal/mol are reached for the methods used, but the ML methods achieve this convergence faster, though some
require more parameters than the original interpretation. Kernel ridge regression required one parameter for each
training point, while the Hammett model had only as many parameters as there are reactions and set of substituents.
These ML equations are an improvement because even if the original formula is simpler and easier to interpret, more
reactions can now be studied, an average of rates can be used, and this allows for a more general equation that can be
better to use than the first incarnation.

The “imitation game” or Turing test describes a remote human interrogator in a fixed time frame, having to distin-
guish between a computer and a human solely on their replies to various questions as asked by the interrogator.10

Through a series of these tests, a computer's success at “thinking” and not merely parroting can be measured by its
probability of being misidentified as the human subject.10 In the concept of molecular design, one could think of a sub-
stance proposed by a “computer” or ML/AI algorithm based on a design challenge proposed by a chemist or biologist
and that such proposed compound is novel, interesting, accessible, non-trivial, and “human-like” in its creativity.

2 | ML MODELS AND APPROACHES

A defining character of ML is hyperparametrization and tuning of these variables in order to minimize a loss function,
that is, minimize the difference between a modeled and an observable function. This loss function minimization can
take the form of gradients and several options are available to achieve early or late convergence.1

Central to ML in chemistry are the data representation of substances, usually in text notation such as SMILES or
SELFIES,11 as well as descriptors or features that can be atom-based, molecular based, topological, voxel, and so forth.
These representations and features affect the way relationships among them can be found. Classical QSAR studies
would put emphasis on reducing the number of features per data row (chemical) in order not to overfit the final corre-
lating equation. However, in ML there is less requirement to perform these feature selections and indeed feature aug-
mentation can occur, though this may come at the risk of reducing the interpretability of ML models.

The Naïve Bayes (NB) algorithm is based on the Bayesian theorem assuming that for a given target value, the
description of each predictor can be performed independently to other predictors. The final prediction is achieved by
considering all descriptor-based properties.12

The RF classifier is built on decision trees. Each tree is independently constructed and each node is split using the
best among a subset of predictors randomly chosen at the node.13

J48 is a decision tree algorithm that uses a tree pruning approach, which generates fewer but more easily inter-
pretable results. The J48 algorithm takes one attribute of the data and splits the set of samples into subsets, one for
every value of the attribute. The attribute with the maximum information gain will be selected to make the
decision.14
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The Sequential Minimization Optimization (SMO) algorithm is widely used for training support vector machines.
SMO, an iterative classifier, breaks up the quadratic programming optimization problem into smaller issues, finally
solved analytically. The SMO algorithm is simple, easy to use and fast.15

A convolutional neural network (CNN) model is largely used for graphical data, with pixels or vector representa-
tions, for example, inputs a 3D grid of each protein−ligand complex wherein every grid point stores atom densities in
order to calculate protein–ligand binding.16

A deep neural network (DNN) is composed of several hidden layers of neurons that adapts (learns) new conditions,
and represents the type of ML when the system uses many layers of nodes to derive high-level functions from input
information.17

If we take SMILES representations as words (the SMILES for benzene is c1ccccc1, for example), then generating
new SMILES strings can be regarded as natural language generation and a recurrent neural network (RNN, typical tool
for such tasks) can be employed.18 An RNN has a temporal memory enabling the capture of long range dependencies
within a message and as reviewed recently by Elton et al., RNNs are also an important architecture for molecular gener-
ation, especially in drug discovery.18

Boosting is a ML technique that can help improve other algorithms by giving stronger weights to correct predic-
tions.19 Light-gradient and distributed optimized gradient (XGBoost20) boosting methods are derived from these and
can often be the best performers numerically in competitions by just combining other algorithms and increasing the
predicted accuracy by a few fractions of hundreds or thousands of a percentile. However, it is arguable that such a
minor increase in numerical performance is indeed an increase in performance if the results are virtually the same and
do not allow better control of inputs.

ML can also be used to reduce dimensionality of data sets, that is, to distil the most representative features in multi-
dimensional data such as in t-distributed stochastic neighbor embedding (t-SNE), a useful nonlinear dimensionality
reduction ML technique for visualization of multidimensional data in 2D or 3D21]. This has advantages over other
widely-used methods such as principal component analysis (PCA) because t-SNE tries to conserve the local structure of
data points and their vicinities, whereas PCA (also an unsupervised data method as t-SNE) tries to conserve the global
structure of data points and is highly affected by outliers. PCA is used in noise filtering, feature extractions, stock mar-
ket predictions, and gene data analysis; t-SNE is used in computer security research, music analysis, cancer research,
bioinformatics, and biomedical signal processing.22

All data science and ML techniques require large quantities of balanced, unbiased, high-quality, diverse, curated,
and representative data. It is critical for ML to have large, quality datasets, and biases are evident in several widely used
databases, giving rise to probably spurious relationships.23 Benford's Law is a relationship between the first, second,
and third or more significant digits of data spanning multiple orders of magnitude, and constitutes one way of statisti-
cally comparing distributions of data to test for following of natural phenomena distribution patterns.24 It has even
been used to detect fraudulent data.24 Typical and important properties in molecular design and development also fol-
low these distributions, as shown for logP, pKa, and solubility of drugs, of National Cancer Institute (NCI) and larger
sets of compounds, both experimentally determined and calculated.24 Using these types of tests can help determine
whether there is enough (diverse) data in a training set to resemble a natural distribution, and also to help guide data
generation toward a natural distribution of phenomena. One way of improving reproducibility and transparency in
computational chemistry calculations has been proposed by using blockchain technology.25 A small molecular dynam-
ics simulation was performed on a carbon monoxide molecule allowing also the immutability of calculations.25 This
would enable to trace and repeat a calculation without any interference or modification.

Active learning is defined as ML where the predictions guide the next data points to acquire, that is, the most valu-
able next experiment.26 Alternative learning approaches include meta-learning,27 transfer-learning,28 multitask
learning,29 few-shot learning,30 as well as generative models.31

For classification tasks, metrics commonly used to measure the classification results are based on the true and false, posi-
tives and negatives given their correct or incorrect predicted classification (TP, FP, TN, and FN, respectively. Performance of
ML methods is usually tracked or tuned using accuracy (TP + TN/[TP + TN + FP + FN]), precision (TP/[TP + FP]), recall
or sensitivity or true positive rate (TP/[TP + FN]), specificity or selectivity or true negative rate (TN/[TN + FP]), Matthews'
correlation coefficient (MCC, (TP�TN − FP�FN)/√((TN + FN)�(TN + FP)�(TP + FN)�(TP + FP)), F1-scores (2 * (precision
+ recall)/(precision * recall)), balanced accuracy (BAC, [sensitivity + specificity]/2), and area under the receiver-operator
curve (ROC-AUC), among others. Metrics are not the only factor in determining the quality of a prediction. The reusability
and interpretability or control over a method are as or even more important. Of course, data representations, features, algo-
rithms, layer constructions, ML theory and implementations, are all active areas of research and development328.11
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Even if there is no mathematical definition of interpretability, it can be defined as the degree to which a human can
understand the cause of a decision,33 or as the degree to which a human can consistently predict a model's result.34 In a
ML model with high interpretability, it is easier for a person to understand why certain predictions or decisions were
made.35

3 | APPLICATIONS OF ML IN BIOMOLECULAR FIELDS

True molecular design is an expensive and slow process of repeated trial and error. Design of catalysts can help in a
multitude of reactions to make possible or more feasible, important and expensive conversion of substances to products.
Catalyst design can also be aided by ML using gradient based optimization and alchemical transformations.36 For exam-
ple, comparison of a genetic algorithm (GA) with Monte Carlo and random sampling for optimization of core−shell
nanoparticles showed that the fraction of nanoparticles found with energies within 0.25 eV of the optimal d-band
reaches a point where GA finds more than twice as many particles with the desired fitness as other sampling methods
(37% of fit particles after sampling 15% of space).37

Gómez-Bombarelli et al.32 showed how a generative adversarial neural network (GAN) coupled with a discriminator
neural network (NN) can guide the automated design of compounds based on a continuous data-driven representation
of molecules. Inverse design of compounds can then be based on optimization of required properties and then synthesis
(also in automated design of materials), rather than synthesizing many compounds (expensive) to then optimize their
properties.38,39 For the first study, a deep neural network was trained on hundreds of thousands of structures to build a
coupled encoder, decoder, and predictor, where continuous representations of molecules automatically generated novel
chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing
known chemical structures, or interpolating between molecules. Gradient-based optimization efficiently guided the sea-
rch for optimized functional compounds for drug-like molecules and molecules with fewer that nine heavy atoms.
Using an objective function of 5 × QED − SAS (QED is a desirability measure called “Qualitative Estimate of Drug-
likeness,” and SAS is a synthetic accessibility score), a starting compound with 0.65%, 3.56%, and 18.06% QED, SAS,
and percentile, respectively, is transformed to an ending compound with improved values of 0.89%, 2.09%, and
98.23%.32

Of special interest are AI-designed compounds being coupled with automated chemical synthesis to speed the iden-
tification of novel lead compounds,40,41 such as self-driving laboratories that iteratively design, execute, and learn from
experiments in a fully autonomous loop.42 A “mobile robot chemist” has been presented in the Bayesian optimization-
led search for improved photocatalysts for hydrogen production from water,43 where the free-roaming robot operated
autonomously over 8 days, performing 688 experiments within a 10 variable experimental space, driven by a batched
Bayesian search algorithm.43 The hope is that ML and AI driven automated chemistry reduces the speed and complex-
ity of numerous simultaneous variables and conditions can be harnessed for other chemical discovery projects.

ML has also been used for a general-purpose neural network potential (ANI) that approaches CCSD(T)/CBS accu-
racy on thermodynamic benchmarks by training a network to DFT data followed by transfer learning techniques
retraining on gold standard QM calculations (CCSD(T)/CBS) and thus optimally scanning chemical space. The
resulting potential is 109 times faster than CCSD(T)/CBS calculations and has comparable accuracy.44 The neural net-
work potential ANI-1ccX NNP has been used to study protein-ligand binding affinities45 by representing the intramo-
lecular forces of protein-bound drugs within molecular dynamics simulations. These potentials are reported to be
capable of predicting the protein–ligand binding pose and conformational component of the absolute Gibbs energy of
binding for a set of drug molecules. Molecular mechanics overestimated by a large number (circa 4.7 kcal/mol) the con-
formational energy for the drug erlotinib binding to its target, while the NNP predicts a more moderate number.45 This
ANI functional allows to make use of the molecular mechanic's (MM) well-characterized parameters for protein and
solution while using the NN-derived potential for the intramolecular interactions, which does not need the slow and
laborious (and prone to error) development for each ligand of harmonic/torsional/improper terms used in conventional
force fields. These and other techniques may help in increasing accuracy in modeling studies, helping to reduce false
predictions while maintaining quick calculation times. However, since the ANI potential was not developed with
charged groups, these are problematic for the NN potential though they are also a source of error in conventional
forcefields.

CNNs have been shown to give less prediction errors than kernel ridge regression (KRR) and RF with normalized
mean average errors of 0.0494 for the CNNs compared to 0.136 for KRR and 0.239 for RF.46 It is thus apparent that
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different ML techniques will be better suited to different tasks based on the type of data, molecular representation
(descriptor or atom or image-based), activity landscape, and so forth.

It is also common for ML methods to not improve, or only slightly improve the results that can be obtained through
other more established modeling techniques. However, there are also large steps in improvement observed in some
applications using ML, such as in competitions for structural prediction, as well as protein–ligand binding prediction.
For the latter, the Drug Design Grand Challenge 4 (D3R GC) found good submissions for pose prediction from docking
as well as from ML (docking: 60% of all submissions in the first stage had a median pose RMSD <2.5 Å, and pose pre-
diction results were of high accuracy across nearly all submissions for beta secretase 1 [BACE1]).47 For affinity predic-
tion however, many methods underperform the null model of ligands simply ranked based on molecular weight. For
the 10 ML submissions, a RF regression null model built with ChEMBL data as a baseline is outperformed by many of
the ML methods for enzymes. Similar performance was observed for affinity prediction for the BACE target for methods
whether utilizing ML or not, though for the CatS enzyme, methods that used ML tended to perform better than those
that did not.47 For protein structure prediction, AlphaFold by DeepMind uses large amounts of genomic and protein
structure database information to predict folded protein structures that have outperformed all other techniques in the
Critical Assessment of Protein Structure Prediction (CASP).48 From that data, AlphaFold DNNs predict the distances
between pairs of amino acids and the angles between chemical bonds that connect those amino acids. The NN predicts
a distribution of distances between every pair of residues in a protein, which are then combined into a score that esti-
mates how accurate a proposed protein structure is. A separate neural network uses all distances in aggregate to esti-
mate how close the proposed structure is to the right answer.48 These scoring functions are used to search the protein
landscape to find structures that matched the predictions. They trained a generative NN to invent new fragments,
which were used to continually improve the score of the proposed protein structure. The second part of the method
optimized scores through a gradient descent resulting in highly accurate structures. While the next best method that
used contact information and sampling reported accurately 14 out of 43 domains, AlphaFold produced high-accuracy
structures with template modeling scores of 0.7 or higher for 24 out of 43 free modeling domains.48 AlphaFold2
approaches experimental accuracy for CASP14, and revolutionized the field of protein structure prediction, leading to
news headlines of "solving protein folding". Accurate protein (and nucleic acid) structure prediction can be an impor-
tant step in the description, interpretation, and calculation of biomolecular interactions. Biomolecular interactions are
a foundation stone of intra- and intermolecular and intra- and intercellular, tissue, organ and organism communication
and bioactivity.

A dataset compilation such as the QM9 dataset based on the massive GDB database of combinatorial exploration of
the chemical space gives overall higher accuracy in energy prediction than PC9, an equivalent dataset with only
H, C, N, O and F and up to nine heavy atoms of the PubChemQC project. However, PC9 encompasses more chemical
diversity and a stronger ability to predict energies, as determined through statistics of bonding distances and chemical
functions, as well as Kernel Ridge Regression, Elastic Net, and the Neural Network model provided by SchNet.49

ML can also be used to rationalize the pathway and mechanism of inhibitors. Molecular dynamics
(MD) simulations have been used as input to a DNN that is able to identify the relationship between the functional
properties of ligand-receptor complexes and the ensemble of conformations that they sample within MD trajectories.50

ML is thus used for the ligand-specific functional mechanisms of g-protein coupled receptors (GPCRs, an important
class of proteins for drug development) by the pharmacological classification of ligands bound to the 5-HT 2A and D2
subtypes of class-A GPCRs from the serotonin and dopamine families.50 The extra cellular loop ECL1 is known to play
a critical role in class-A GPCR activation, adopting ligand-dependent conformations that are important for function.51

The N-terminus of the intracellular loop ICL3 is also critically important for GPCR activation as this site directly inter-
acts with the G protein involved in the opening of the intracellular side of the receptor observed in active GPCRs.52

Besides being able to discriminate between ligand classes, the dynamics of these motifs are different between the 5-HT
2A R and D2R systems. This study also shows how important motifs can be used as collective variables and be extracted
from the network to help in further analysis. ML can also help in analyzing and enhancing MD simulations by helping
to efficiently sample the underlying free energy surface and kinetics.53 Such tools can improve MD methods for
explaining pathways and mechanisms of action of compounds. Challenges remain toward interpretability (what did the
ML model learn?), transferability (would the ML model work on another system?), and if an ML model can be used to
generate Boltzmann-weighted samples that were previously unexplored (sampling challenge).53

Other ML methods can also give good results. A study found that convolutional neural networks (CNN), where
atom properties are used instead of pixels, are more accurate than DNN for predicting quantum chemical energies.54

2-D CNNs and position specific scoring matrices for amino acids were also of use in bioinformatics for finding proteins
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with the important molecular function in transmembrane proteins of being engaged in electron transport.55 This study
found better performance than kNN, RF, LibSVM, and QuickRBF, with good values for sensitivity (80.3%), specificity
(94.4%), and accuracy (92.3%), in addition to a MCC of 0.71 for an independent dataset. De-orphaning proteins, or find-
ing functions for them, is an important area of biomedical research in order to find targets for modulation of biochemi-
cal events.

DL can also be used to detect S-sulfenylation sites from protein sequence information alone by coding them as natu-
ral language sentences comprising biological subwords and then consequentially employ them to perform classifica-
tion.56 The performance statistics with an independent dataset gave sensitivity, specificity, accuracy, MCC, and area
under the curve (AUC) rates of 85.71%, 69.47%, 77.09%, 0.5554, and 0.833, respectively. These methods are expected to
increase in use given the need to predict the function of proteins based on their sequence, as there are still many more
proteins with sequence information determined rather than structural information.

The response of human cancer cell to drugs and their synergy has been predicted by an interpretable DL model able
to stratify ER-positive breast cancer patient clinical outcomes, as well as predicted combinations improving
progression-free survival in patient-derived xenograft models (overall survival median of 48.2 months, n = 104 with
DrugCell vs. median overall survival of 33.6 months, n = 118 without DrugCell).57 ML techniques have not reached
clinical practice in large numbers because they have lacked interpretability and focused on monotherapies. DrugCell
was trained on the responses of 1,235 tumor cell lines to 684 drugs and their combinations, showing how to construct
interpretable models for predictive medicine.

4 | APPLICATIONS OF ML IN DRUG DESIGN

ML has been used for predicting target identification and validation, identification of prognostic biomarkers, and analy-
sis of digital pathology data in clinical trials and for drug discovery.58,59 Issues being raised are challenges in the inter-
pretability and repeatability of ML-generated results, as well as the need for large amounts of data. Consensus scoring
across different targets using ML has also been performed, showing advantages in scoring of structure-based virtual
screening over previous methods,60 most likely due to hedging results of predictions from several methods. Different
docking programs perform differently over each target in the DUD-E dataset.61 A transfer-learning approach called boo-
sting consensus scoring (BCS) uses individual tree ensemble classifiers (one for each target) and trained by gradient
boosting using active and decoy compound labels from DUD-E and the docking scores from the eight programs as fea-
ture inputs.60 BCS outperformed both the individual programs and the traditional consensus methods, with a
ROC-AUC value of 0.85 and enrichment factor at 1% (EF1) of 29 compared to the mean consensus of ROC-AUC = 0.83
and EF1 = 26. These represent a small, though statistically significant improvement.

Drug design is essentially a multiobjective search for the best balance of binding energy, solubility, bioavailability,
toxicity, and so forth. These several, sometimes conflicting objectives can be solved for using a Pareto front. Global
error metrics for model quality may not be predictive of discovery performance and so Pareto shell error (bands about
the Pareto front) has been proposed for assessing ML methods to help judge the suitability of a model for proposing
candidates (non-global, better focused on top candidate acquisition in multiobjective candidate discovery).62 Recurrent
neural networks (RNNs) can be trained as generative models for molecular structures, similar to statistical language
models in natural language processing. This has been performed for de novo compound design that recovered inhibi-
tors in two cases: for Staphylococcus aureus (model reproduced 14% of 6,051 hold-out test molecules), and against
Plasmodium falciparum.31 An approach for automated drug design is to use RNNs as SMILES generators and train
them with the learning procedure called transfer learning. First, the initial model is trained on a large generic data set
of molecules to learn the general syntax of SMILES, followed by fine-tuning on a smaller set of molecules coming
from, for example, a lead optimization program.63 Amabilino et al. showed that data set sizes containing at least
190 molecules are needed for effective GRU-RNN-based molecular generation using transfer learning.63

Boosting as a ML technique giving stronger weights to algorithms with correct predictions among an ensemble of
algorithms has been performed in AL-Boost,64 allowing to distinguish between drugs and nondrugs as well as between
organ or tissue anatomical therapeutical chemical classification system (ATC) disease categories. In addition, dimen-
sionality reduction with t-distributed Stochastic Neighbor Embedding (t-SNE) also achieved such compartmentalization
of drugs/nondrugs/organs or disease categories, such as between Nervous System and Antineoplastic drugs.64 ML of
this type can help better target compounds for their specific site of action and delivery routes, which are critical to
deliver a compound to its desired point of action and avoiding side-effects or toxicity.
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Molecular dynamics fingerprints (MDFPs) have been used as an orthogonal descriptor for training ML models
(RF, gradient tree boosting [GTB], SVM, and meta-learner classifiers) to classify small molecules into substrates and
nonsubstrates of P-gp (P-glycoprotein 1, a protein involved in the efflux of substances from the cell and important con-
tributor to drug resistance for antibiotics and cancer).65 MDFPs were evaluated on an in-house dataset (n = 3,930) and
a ChEMBL dataset (n = 1,114 compounds) and compared to commonly used 2D molecular descriptors including struc-
ture-based and property-based descriptors. ML methods trained on these descriptors were found to produce good classi-
fication models (accuracy >0.7), although not better than the models using simpler and less computationally expensive
descriptors such as PropertyFP or water-based MDFPs. The most relevant features in the membrane−solute and pro-
tein−ligand MDFPs were the solvent-accessible solvent area (SASA) of the solute and Lennard-Jones energy terms and
not specific behavior of the compound in the membrane or the interactions with the protein. These approaches high-
light the use by ML of information content-rich data such as MD simulations, though acquiring the right (relevant)
information and the degree of complexity of data are important factors.

Deep NN for QSAR applications are gaining in appeal, and these methods can in cases show better performance
than traditional approaches.66 However, the gain in performance may not be much greater to justify the additional time
and hardware investment needed for these methods.67 The Machine Learning for Pharmaceutical Discovery and Syn-
thesis (MLPDS) consortium comprising the Massachusetts Institute of Technology (MIT) and 13 chemical and pharma-
ceutical companies (Merck, Sunovion, Janssen, AstraZeneca, Eli Lilly, LEO, Amgen, Pfizer, GSK, BASF, Bayer,
Novartis, and WuXi) is a data-driven synthesis planning program to discuss how predictive models can be integrated
into medicinal chemistry synthesis workflows.68 Standardized metrics, shared data sets, common benchmarks, funda-
mental advances to representation, robustness in low-data scenarios, and generalizability were identified in order to
create more robust machine-learning-based synthetic tools. Hybrid ML and expert-encoded tools may be able to present
useful aspects where many of the current Computer Aided Synthesis Planning (CASP) tools are developed for planning
routes using robust, reproducible chemistry. These tools not only suggest transformations that an experienced chemist
could not identify but also aim to enable chemists to lighten the cognitive burden of synthesis planning. A deep genera-
tive model, generative tensorial reinforcement learning (GENTRL) was used to discover in 21days potent inhibitors of
the discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases.69 The most potent
compound with nanomolar activity had favorable pharmacokinetic properties even if it resembled several known inhib-
itors.70 There have also been reports of the first AI-created compound to enter Phase I clinical trials in a collaboration
between Exscientia and Sumitomo Dainippon Pharma.71,72 In this case, a compound was designed that acted as a long-
acting 5-HT1a agonist for obsessive–compulsive disorder treatment (OCD).

Another GAN coupled with a discriminator NN has also been used to design antimicrobial peptides with the most
potent having a minimum inhibitory concentration of 3.1 μg/mL, twice as strong as ampicillin.73 GANs have also been
used for creating latent space and inverse QSAR that was searched to generate novel compounds with predicted activity
against the dopamine receptor type 2.74 Fragment-based structure generation has been proposed through knowledge
and use of synthetic complexity, chemically valid structures, novelty, and diversity of compounds.75 It has been used in
multiparameter optimization in de novo design based on an actor/critic model both using bidirectional long short-term
memory (LSTM) networks,76 where the AI method learns how to generate new compounds with desired properties
from an initial set of lead molecules and improving them by replacing their fragments.Thus obtained were 93% of the
generated molecules as chemically valid and over 33% satisfied the targeted objectives, while there were none in the ini-
tial set.76

Image-based prediction of properties/activities has also been proposed as a DL QSAR using transfer learning to
build models for antagonists of the progesterone receptor.77 DeepSnap-DL uses images of three dimensional structures
with multiple angles as input data into DL classification by optimization of parameters and image adjustment from
3D-structures.77 ML has also been used for predicting drug repurposing,59,78 aiming to exploit compounds that have
already passed clinical trials for safety, though they may require additional consideration of the different administration
and dosing patterns for the repurposed use from those of their original indication.

Success for active learning can also be defined by the medicinal chemistry-important improvement of retrieval of
novel active chemotypes79–81 or robustness against enriching false assay positives.82 Some small studies imply that
active learning performed optimizations in a more systematic and explorative manner than other methods,82 though
larger studies are required for firmer conclusions.

When the COVID-19 pandemic struck and led to worldwide lockdowns, several groups collaborated for finding lead
compounds against the SARS-CoV-2 MPro protease using AI and ML, fragments, and X-ray crystal structures from the
Diamond light source.83 These initial micromolar hits were then further optimized to nanomolar potent compounds,
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demonstrating the use of distributed research efforts and ML methods used in different locations for contributing to
solve a pressing and urgent health need. This also highlights the neglect about concerns made for years about the prob-
ability of dangerous pandemics.

Promiscuity cliffs have also been proposed by the ML study of fragments on multiple target ligands. It can be chal-
lenging to provide well-defined rules given the large number of pan-assay interfering compounds (PAINS) and their
highly variable substructures, yet ML has been used to predict PAINS compounds that are promiscuous and distinguish
them from others that are mostly inactive.84 Activity cliffs can be useful to medicinal chemists for exploring regions of
chemical space and functional groups substitutions that provide “jumps” in activity.85 However, they also affect QSAR
and ML techniques, so special consideration must be used to avoid outliers, noise, and misclassifications in the underly-
ing data, as well as using the most appropriate modeling tool for discontinuous data landscapes.85 Protein/ligand inter-
action fingerprints (IFPs) were found to capture more binding mode-relevant information than atom environment
fingerprints in an active learning setting.86

A well-established technique in drug design and discovery is virtual screening with structure-based methods such as
molecular docking,87 especially coupled to experimental validation and prediction.88–91 Several programs and scoring
functions are available for this task (predicting ligand binding poses and ranking) and they differ in their accuracy for a
given protein/ligand pair.92,93 A study presents a bespoke NN where the choice of the most adequate docking program
(search method)/scoring function for complex data in the PDBBind was calculated by joining two NN, one based on a
Graph Convolutional Network on voxelized representations of protein binding sites and another based on a fully-
connected NN based on ligand ECFP fingerprints and 2-D descriptors.94 The resulting NN gave the lowest average and
the lowest RMSD of the generated poses, as well as the largest number of poses with a lower RMSD than the X-ray reso-
lution of the corresponding crystal. These are valuable predictions in order to best choose the most adequate combina-
tion of search algorithm/scoring function for a given system or class of systems; in this case, the best results being
obtained by a data split consisting of sampling 20% of proteins in each non-overlapping PFAM cluster.94

D-COID is another attempt at building a training dataset with the aim to generate highly compelling decoy com-
plexes that are individually matched to active complexes95 given that challenging decoys or negatives are not commonly
used. An earlier well-known dataset is the DUD-E decoy compilation61 that may include hidden bias.96 vScreenML was
trained as a general-purpose classifier for virtual screening built on the XGBoost framework. The authors state that vir-
tual screening with their technique can go from a typical 12% hit rate to up to 10 out of 23 compounds with an inhibi-
tion constant IC50 < 50 micromolar, including one compound with IC50 = 280 nanomolar (Ki = 173 nM).

A typical problem in drug discovery is that there are not enough data or the data are too sparse and do not cover
well chemical space. Precisely for this scenario, an optimized chemical language model (CLM) implementing a NN with
long short-term memory (LTSM) with transfer learning, augmented data, and temperature sampling enabled generating
SMILES of molecules at the interface of natural products and synthetic compounds.97 Other techniques include data
augmentation, basically increasing the data available by transforming and generating features (descriptors) based on
the data already available. Using protein information to augment data has been shown to be able to improve DL post-
processing of virtual screening results for generalization (make better predictions on protein/ligand complexes from a
different distribution to the training data) by forcing to include protein/ligand information into the model.98 A problem
for virtual screening is a large proportion of false positives. Including more stringent decoys matched by molecular
properties and binding conformations in an XGBoost procedure (gradient-boosted decision trees) showed notable sepa-
ration of the scores assigned to active/decoy complexes along with a slight increase in MCC of 0.57.95 Notably, almost
all the predicted compounds from this method showed experimental inhibition of the target acetylcholinesterase
(AChE), with several of them at nanomolar potency.

5 | ML APPLIED TO RARE, NEGLECTED, AND UNDERSTUDIED DISEASES

Given the advance in techniques and data, ML can also find good use in the discovery and design of rare and neglected
disease therapeutics. Small molecules, biologics, as well as new targets are amenable to be tackled. Well-known targets
can have a new approach, such as in the (non-conserved) allosteric binding sites of Mycobacterium tuberculosis fuma-
rate hydratase.99,100 Multiple target design21,101–103 can also be well suited for finding patterns of compounds with
required interactions. Multiple organ dysfunction syndrome (MODS) is commonly observed in pediatric intensive care
units and sepsis is a suspected leading cause, but the full understanding of the epidemiology and outcome of MODS in
children is limited by inconsistent definitions and populations studied. Three hundred children each year are affected
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by Diffuse intrinsic pontine glioma (DIPG). Hepatocellular carcinoma is a rare form of liver cancer responsible for
662,000 deaths each year.104 All three are being studied through database analysis and interactions of 12,000 com-
pounds with targets and next-generation sequencing, matching molecular and genomic characteristics of rare disease
against databases revealing which compounds may act on which characteristics.104

Tourette's syndrome (TS) has also been approached by compiling data using functional connectivity magnetic
resonance imaging to examine whole-brain functional networks in children and adults with Tourette's.105 Diagnos-
tic classification via multivariate classification methods showed that brain networks in childhood TS appeared
“older” and brain networks in adulthood TS appeared “younger” in comparison with typically developing
individuals.

Suicide is a neglected public health problem in Northern Europe with multiple causes. Suicide risk has been
studied using ML and single-payer health care registry data from tens of thousands of people in Denmark,106 where
classification trees and random forests showed sex-specific differences in risk for suicide, physical health being more
important to men's suicide risk than women's suicide risk. Psychiatric disorders and possibly associated medications
were important to suicide risk. Diagnoses and medications measured 2 years before suicide were more important
indicators of suicide risk than when measured 6 months earlier. Individuals in the top 5% of predicted suicide risk
appeared to account for 32.0% of all suicide cases in men and 53.4% of all cases in women.106

Parents of children with a rare disease, patient groups, and foundations can now quickly form their own teams of
researchers and clinicians from scratch, raise money to fund a portfolio of complementary research strategies, and then
increasingly use external companies to independently replicate their findings.107 Datasets have been compiled that are
ready for use with ML, such as with Charcot–Marie Tooth 1A (CMT1A), which is caused by mutations in the gene
PMP22 (first identified in 1992). Advances in this way have also been produced for the ultra-rare disease multiple sulfa-
tase deficiency (MSD) that has no treatment, caused by mutations in the gene that encodes the human C (alpha)-
formylglycine generating enzyme, sulfatase-modifying factor 1 (SUMF1); as well as for the case of the Cystic Fibrosis
Foundation that is the benchmark for how a large rare disease foundation could help bring a treatment to market and
see a return on investment.107

Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory
markers have been studied using ML: biomarkers were organized into biological groups and by enzymatic pathways
and applied adaptive elastic-net and random forest to evaluate the accuracy of each group for predicting preterm birth
cases108; adaptive elastic-net identified 5-oxoeicosatetraenoic acid, resolvin D1, 5,6-epoxy-eicsatrienoicacid, and 15-
deoxy-12,14-prostaglandin J2 as the most predictive compounds for spontaneous preterm birth.108

Problems with fertility are rising in developed and developing countries. Fertility associated proteins can be found
in bone marrow and peripheral blood, postnatal mammalian ovary and daily sperm production.109 Fertility-GRU incor-
porates gated recurrent units and position-specific scoring matrix profiles to predict the function of fertility-related pro-
teins, reducing overfitting in the data set by adding dropout layers in the DL model, and producing predictions with a
cross-validation accuracy of 85.8% and an independent accuracy of 91.1%, sensitivity of 90.5%, specificity of 91.7%, and
an MCC of 0.82.

5.1 | ML and drug development for NTDs: Drug discovery, drug repurposing for NTDs

NTDs are communicable diseases highly prevalent in tropical and subtropical areas in 149 countries. The World Health
Organization (WHO) has identified 20 NTDs caused by bacteria, helminths and protozoa parasites or viruses, such as
Buruli ulcer, dengue, dracunculiasis (guinea-worm disease), echinococcosis, foodborne trematodiasis, human African
trypanosomiasis (sleeping sickness), Chagas disease (American trypanosomiasis), leishmaniasis (Cutaneous and Vis-
ceral), leprosy, lymphatic filariasis (elephantiasis), onchocerciasis (river blindness), rabies, schistosomiasis (snail fever),
soil-transmitted helminthiasis (intestinal worms), taeniasis/cysticercosis (pork tapeworm), blinding trachoma, yaws,110

and “new” NTDs (mycetoma, chromoblastomycosis and other deep mycoses, scabies and other ectoparasitic infesta-
tions, and snakebite envenoming) (Table 1).

NTDs disable and disfigure more than they kill. Disability adjusted life years (DALYs) due to NTDs are comprised
of 56% by years lost due to disability (YLD) and 44% by years of life lost (YLL), if compared to 7% of YLD and 93% of
YLL for malaria, as an example of a known tropical infectious disease.127 NTDs exhibited a collective DALY burden
equivalent to HIV/AIDS, tuberculosis, or malaria.128
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TABLE 1 Impact of neglected tropical diseases (NTDs), new and continuous threats in the world

Type Category Disease Etiologic agent Impact in 2018 References

NTDs Protozoan
infections

Human African
Trypanosomiasis

Trypanosoma brucei spp. 977 new cases 111

Chagas disease
(American
Trypanosomiasis)

Trypanosoma cruzi >6 million infected 112

Leishmaniasis Leishmania spp. 261,000 new cases 111

Helminth
infections

Cysticercosis/
Taeniosis

Taenia solium Taenia solium endemic or suspected
endemic in at least 76 countries

111

Dracunculiasis Dracunculus medinensis 28 113

Echinococcus Echinococcus spp. >1 million infected 114

Foodborne
Trematodiases

Clonorchis spp., Opisthorchis spp.,
Fasciola spp. and Paragonimus
spp.

200,000 illnesses (data from 2015) 115

Lymphatic filariasis Wuchereria bancrofti and Brugia
spp.

120 million infected 116

Onchocercariasis Onchocerca volvulus 154 million people treated 111

Schistosomiasis Schistosoma spp. 200,000 deaths in 2000, expected to
have decreased

117

Soil-transmitted
helminthiases

Ascaris lumbricoides, Trichuris
trichiura, Necator americanus,
and Ancylostoma duodenale

>1.5 billion people infected 118

Bacterial
infections

Buruli ulcer Mycobacterium ulcerans 2708 new cases 111

Leprosy Mycobacterium leprae 208,613 new cases 111

Trachoma Chlamydia trachomatis 89 million people treated 111

Yaws Treponema pallidum subspecies
pertenue

80,472 suspected; 888 confirmed 119

Viral
infections

Dengue Four serotypes of dengue virus
(DENV)

4.2 million reported cases in 2019 120

Chikungunya fever Togaviridae viruses 349,936 suspected and 146,914
confirmed cases (data from 2016)

121

Rabies Lyssavirus 94 deaths in 2017 111

Fungal
infections

Mycetoma,
chromoblas-
tomycosis, deep
mycosis

Wide variety of common
saprotrophs organisms,
including bacteria and fungi

8763 (reported in 2013) most likely
highly underestimated

122

Ectoparasitic
infections

Scabies Sarcoptes scabiei var hominis >200 million people 123

Myiasis Dipterous species larvae 464 in the last 20 years, severely
underreported

124

New threats Viral
infections

Ebola Ebolavirus Ongoing outbreak in Democratic
Republic of Congo, previous
outbreak caused 28,610 cases

125

COVID-19 SARS-CoV-2 16,341,920 confirmed cases of
COVID-19 in July 2020

126

Continuous
threats

Protozoan
infections

Malaria Plasmodium spp. 219 million patients (data from
2017)

111

Viral
infections

VIH/AIDS Human immunodeficiency viruses
(HIV)

3,344,000 patients (in 2019) 111

Bacterial
infections

Tuberculosis Mycobacterium tuberculosis 10 million 111
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Currently, the number of people needing NTD interventions is close to 2 billion. In addition, every year more than
1 billion people presently receive treatment against at least one NTD.129 Ultimately, the focus of improving NTD con-
trol, elimination, and eradication should not only be on drug discovery, safeguarding access and delivery but also
expanding efforts to develop novel vaccines and rapid diagnostics.

5.1.1 | ML in NTD drug discovery

The estimated cost of drug development rises every few years. The newer in vitro pharmacological screenings have
increased costs attributed to manufacturing a medicine from $1 billion to $2.8 billion in less than 20 years.130 All the
same, the biggest challenges of drug discovery, low efficacy and toxicity, remain prevalent.131 A novel approach to over-
come these challenges would be the implementation of ML among each of the unique steps in the drug discovery path-
way. Given the existence of available models, they could be used to predict the probability of a compound to be
ultimately clinically viable.131 This would allow the access of smaller companies and researchers into the field of drug
development and address more varied pharmaceutical needs. In fact, there are already models that help in the predic-
tion of interactions with the target89,132 as well as undesirable off-target effects.89,133

6 | DATABASES FOR NTD DRUG DISCOVERY

Over the last decade, chemical and biological information available in public databases such as PubChem and
ChEMBL134,135 have become much more accessible and increase coverage of chemical and biological space. Neverthe-
less, the correct preparation and adaptation of the data including curation is required in order to adequately build and
use ML models.136

A number of resources are available for chemistry with ML (Table 2), such as software deepchem,137 che-
moinformatics RDKit,138 MoleculeNet (a benchmark of compounds and data for ML),139 pytorch software,140 KNIME
(a pipelining tool),141 and databases ChEMBL, Probes & Drugs,142 PubChem,143 SureChEMBL (patented ligands),145

among others. These tools have also allowed for better reproducibility, transparency, and further use of the models,
data, approaches, and projects.145

Regarding NTDs, there are several examples of applications of ML including the identification of four in vivo active
compounds against Trypanosoma cruzi, the eukaryotic parasite causing the NTD Chagas disease.176 Ekins et al. (2015)
analyzed and identified more than 500 molecules with associated target information176 to create the Collaborative Drug
Discovery database.177

The Broad dataset (TRYPANOSOME: Broad Primary HTS to identify inhibitors of T. cruzi replication) has also been
made available in PubChem (bioassay record: AID 2044). Furthermore, a Pathway Genome Data Base (PGDB) was gen-
erated for the identification of distinct gene products, enzymatic reactions, pathways, and metabolic compounds in the
search for potential targets.

On the other hand, one of the biggest obstacles to overcome in the treatment of NTDs, including leishmaniasis,
is the high toxicity and costs of the currently approved drugs along with the sometimes limited activity and high
prevalence of drug resistance.178,179 In order to avoid unwanted effects (toxicity), one option is to target specific pro-
teins of the parasite. Using this strategy, Jamal et al. took a dataset of 292,470 available compounds180 (bioassay
record AID 1721 at PubChem181) and analyzed their activity as pyruvate kinase inhibitors, as well as 179
2D-molecular descriptors using four well-known classifier algorithms: Naïve Bayes (NB),12 Random Forest (RF),13

J48,14 and Sequential Minimization Optimization (SMO).15 After the evaluation of these models, in spite of the simi-
lar performance of all models, RF was estimated to be better than the others and was recognized as the best classi-
fier offering a good classification overall.180 For instance, the RF model showed a BCR (balanced classification rate,
the average of sensitivity and specificity) of 83%, whereas the average for the other studied models was 79.3%. RF
ROC were also the best, scoring 91.3 against the average of 84.7 scored by the other models.180 The generated
models, manual, and scripts are all available online182 and may allow progress in the discovery of novel molecules
with biological activities against NTDs. A similar study targeting Schistosoma mansoni thioredoxin glutathione
reductase yielded comparable results, with the RF classifier generating the best balanced classification rate (BCR) of
80.1, and area under the curve (AUC) of 0.87. For comparison, naïve Bayes scored 65 and 0.72, respectively. Fur-
thermore, subsequent independent docking studies showed correlation between the docking scores and the RF
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TABLE 2 Databases and resources for machine learning (ML) and data science related to neglected tropical diseases (NTDs)

Name Description Reference

MoleculeNet Benchmark of compounds and data for ML 139

OrphaNet Portal for rare diseases and orphan drugs, trials, genes, databanks 147

Tox21 Toxicology database 148

EU-ToxRisk Adverse outcome pathways, read-across, databanks 149

OECD QSAR toolbox Chemical safety and risk assessment 150

KNIME Pipelining tool 141

ChEMBL Compound, assay, and bioactivity database (2 million compounds, >16 million
associated biological activities)

134

Probes & Drugs Libraries and commercial catalogs of bioactive compounds 143

PubChem Compound, assay, reference, and bioactivity database 144

SureChEMBL Patented ligands 145

RDKit Chemoinformatics software 138

Deepchem ML software 137

Pandas Data science software 151

Scikit-learn ML python software 152

ChEMBL-NTD Subset of the primary screening and medicinal chemistry data for neglected diseases 153

TDR-targets Data on targets, drugs, and target prioritization in whole genomes 154

DNDi Collaboration projects with pharma industry for NTD treatment 155

DrugLogit Drugs and nondrug data according to ATC classifications 64,156

MMV Medicines for Malaria Venture 157

PathogenBox Compounds with potential activity against parasites like schistosomiasis and
trypanosomiasis (sleeping sickness)

158

PandemicResponseBox Antiviral, antibacterial, and antifungal leads incl. Zika and Ebola 159

MalariaBox Compounds with potential activity vs. malaria 160

TriTrypDB Collection, management, integration and mining of genomic information and other
large-scale datasets relevant to tryopanosomatic diseases

161

VEuPathDB Collection, management, integration and mining of genomic information and other
large-scale datasets relevant to infectious disease

162

NCBI-gene Map, sequence, expression, structure, function, citation, and homology data of genes 163

PANTHER Tool for classification of proteins (and their genes) to facilitate high-throughput
analysis. Proteins have been classified according to family and subfamily, molecular
function, biological process, and pathway

164

SwissADME Tool for the computation of physicochemical descriptors as well as the prediction of
ADME parameters, pharmacokinetic properties, drug-like nature and medicinal
chemistry friendliness of one or multiple small molecules

165

InterPro For the functional analysis of proteins by classifying them into families and predicting
domains and important sites

166

Pfam A large collection of protein families, each represented by multiple sequence alignments
and hidden Markov models (HMMs)

167

SMART Allows the identification and annotation of genetically mobile domains and the analysis
of domain architectures

168

Superfamily Structural and functional annotation for all proteins and genomes 169

SSGCID 3D atomic structures of proteins and other molecules with an important biological role
in human pathogens themselves, or molecules involved in host–pathogen interactions

170

171
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model, supporting the use of this kind of prediction model for the screening of possible active compounds from
large datasets.

The most prevalent limitation of current high-throughput screening methods is related to the data produced. It can
be relatively straightforward to pinpoint the exact mechanism of action in biochemical assays but compounds identified
this way may not be truly active when in contact with the whole cell due to other factors, such as the inability to cross
the cell membrane. On the other hand, whole cell or phenotypic screening yield no data concerning the drug target(s)
or mechanism(s) of action. Recently, Santa Maria et al.183 overcame this limitation by examining the relationships
between key chemical motifs linked with bioactivity and also linked to binding to known targets. A NB model was pro-
posed since this algorithm is considered to be less sensitive to false negatives than other reported options.184 Further-
more, this study was able to retrospectively define the mechanism of action for the already known antibiotics against
Escherichia coli dihydrofolate reductase (DHFR) as well as prospectively identify novel antibacterial agents targeting
Mycobacterium tuberculosis DHFR (Rv2763c) and were confirmed through docking studies.183

ML approaches have also been used in the discovery of new treatments against NTDs with a high prevalence of
treatment-resistant parasite strains such as malaria.185 In 2020, Neves et al. used deep learning strategies for the con-
struction of binary and QSAR models focusing on antiplasmodial activity and cytotoxicity of candidate molecules, as
deep learning is well-suited to QSAR modeling.186 Afterwards, the most promising compounds were filtered according
to virtual screening and their properties (antiparasitic activity and toxicity) were validated in vitro against P. falciparum
and mammalian cells. Furthermore, QSAR models were used in order to predict chemical features contributing to the
antiplasmodial activity of the compounds. Thus, six fragments with favorable predicted contributions to the activity
were identified and these molecules may find use in the design and optimization of better antiplasmodial compounds.
Finally, three new compounds with high activity against sensitive and multidrug-resistant strains of P. falciparum and
low toxicity in mammalian cells were also found.185

ML algorithms can be used not only for drug discovery but also for the improvement of existing treatments. For
instance, in the case of multidrug-resistant tuberculosis, treatment with moxifloxacin is recommended though also diffi-
cult to adjust due to associated toxicity issues.187 As levofloxacin is considered safer than moxifloxacin, RF and classifi-
cation and regression tree (CART) analyses were performed to predict levofloxacin treatment regimens associated with
the expected microbiologic cure taking into consideration the pharmacokinetic and pharmacodynamic profile of
levofloxacin.188

Using ML, drug resistance and metabolic profiles as functional biomarkers may be useful for the accurate prediction
of the origin of samples, combining epidemiological and genetic observations. Recently, Casimiro-Soriguer et al. applied
a ML innovative approach in which functional profiles of microbiota samples obtained from shotgun sequencing were
used as features for predicting the geographic origin of city metagenomics samples.189

The emergence of drug resistance is a concern for combating pathologies including NTDs. For example, miltefosine
is used as an oral drug against Cutaneous Leishmaniasis. The exact mechanism of action of miltefosine remains
unclear. This drug may cause antileishmanial activity by immuno-modulatory effects on the host macrophage. In addi-
tion, within the parasite it alters lipid metabolism and membrane lipid composition (mainly of phosphatidylcholine that
constitutes more than 30% of the phospholipids on the parasite cell membrane) or DNA fragmentation. It has been
reported that miltefosine transporter proteins (P-gp, an ABC transporter and P4ATPase–CDC50 complex) play a critical
role in the emergence of drug-resistant Leishmania major. The cause of resistance is lower accumulation of drug inside

TABLE 2 (Continued)

Name Description Reference

KEGG: Kyoto encyclopedia of
genes and genomes

High-level functions and utilities of the biological system, such as the cell, the organism
and the ecosystem, from molecular-level information, especially large-scale molecular
datasets

UniProt Protein sequence and functional information 172

GeneDB Genome annotation for species that are undergoing manual curation and refinement 173

RCSB PDB Archive-information about the 3D shapes of proteins, nucleic acids, and complex
assemblies

174

ZINC20 Commercially-available compounds for virtual screening 175,176
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the parasite. Using a ML technique, parasite-specific motifs of these proteins have been identified against which a pep-
tide library was designed.190 The authors aimed to allosterically modulate miltefosine transporter proteins (P-gp and
P4ATPase–CDC50) in L. major using small peptides to reduce the drug efflux and increase its uptake to obtain the accu-
mulation of drug within the parasite and this phenomenon may finally induce a reversal in resistance.190

Due to the major concern of toxicity issues in drug development and to address this, model cell lines have been tra-
ditionally used to evaluate drug cytotoxicity in mammalian cells. NB models can be applied to increase the likelihood
of detecting non-cytotoxic compounds. After constructing a dataset with information derived from PubChem, cross-vali-
dation, and external tests, results might validate such a novel cytotoxicity Bayesian model as a helpful tool able to foster
research in drug development. For example, two distinct substructural descriptors were underlined: FCFP_6 (functional
class fingerprints of maximum diameter 6) and ECFP_6 (extended class fingerprints of maximum diameter 6). The
ECFP-6 based model was significantly better than the alternative FCFP-6 based model. The ECFP-6 based model
showed better ROC-AUC values (77%), specificity (59%), and concordance (68%), when compared to FCFP-6 based
model (values of 73%, 31%, and 56%, respectively).191 Interestingly, similar results were reported by Lane et al., who
demonstrated that a Bayesian model using ECFP-6 descriptors at different threshold cutoffs for activity was equivalent
to or outperformed other ML models (ROC = 0.90, Matthew's Correlation Coefficient [MCC] = 0.66), in this case for
Mycobacterium tuberculosis drug discovery.192

6.1 | ML in drug repurposing

Computational drug repurposing has increased its utility over the past years as an alternative to the huge costs associ-
ated with traditional tools for drug development.87,193 Nevertheless, applications of different similarity-based ML tech-
niques for the discovery of novel drug-disease associations has been limited due to the need of preexisting data,194 as
well as concerns about bias while model building.195 In a recent study, Guney demonstrated the drop in performance
observed in similarity-based ML when none of the drugs from the training and tests set are repeated and used indepen-
dently.196 Since this phenomenon was shown to exist even for the “gold standard,” it was then suggested that the usage
of unsupervised systems-level drug repurposing approaches would prevent these problems.

The main purported advantages of drug repurposing in drug development are possibly reduced safety concerns and
research and development costs since a repurposed drug usually has post-market surveillance data or has been charac-
terized thoroughly during clinical development.197 On the other hand, Genome-Wide Association Studies (GWASs)
based on the genotyping of the complete genome of a huge number of individuals allow to statistically establish a rela-
tion between a genetic variation and a disease or disease-related phenotype.198 In the field of drug repurposing, GWASs
can point out potential gene targets and relate them to several diseases including NTDs. Therefore, it may offer new
indications for already approved drugs. Furthermore, these studies can even highlight pleiotropic effects of genes
(or how a single gene can be implicated in more than one disease with unique phenotypes).199 Pleiotropic effects of
genes are derived from the numerous and different interactions observed in biological networks.200 Among organisms,
it is common to find compensatory mechanisms in most typical signaling pathways. If a disease outcome is not the
result of a single perturbation of a single gene, the treatment for such disease has a higher probability to succeed when
aiming to disrupt several targets implicated in that same disease.

Consequently, in today's scientific world it is becoming increasingly necessary to add procedures able to assimilate
and decipher large amounts of data. In this regard, different studies used these approaches to predict the mortality, dis-
charge diagnosis, length of stay, and readmission into the clinic using deep learning natural language processing (NLP)
methods with high accuracy.201 Likewise, by using the DeepWalk algorithm it was possible to predict new relationships
between drugs and targets based on the exploration of the built biological network.202

7 | CHALLENGES AND OUTLOOK FOR ML FOR NTDs

Common sensible recommendations to the growing efforts using data science and the best approach to use them have
been proposed in 10 rules: (1) Establish data science as a core drug discovery discipline; (2) Engage data scientists ahead
of data generation; (3) Enforce FAIR (“Findable, Accessible, Interoperable, and Reusable”) play; (4) Build analytics and
visualization on top of an integrated data store; (5) Connect distributed data science teams through a strong commu-
nity; (6) Promote a culture of digital savvy across the organization; (7) Embrace and deploy AI without hyping it;
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(8) Complement internal capabilities with strategic partnerships; (9) Allocate sufficient and appropriate resources to
data science teams; (10) Invest in attracting and retaining talent.203

A related problem is becoming apparent in the number of studies using ML but reusing datasets that may be incom-
plete or biased and thus increase the difficulty to compare and assess studies or approaches.23,96 For example, robust,
simpler techniques appear to be more transparently published and reproducible in QSAR publications.204 Moreover,
ML models should be stable and not depend too greatly on the random number used, platform, or version of software
implemented, but produce reasonably similar results for the same specific inputs and algorithm. In addition, it is
expensive, time-consuming, and laborious to gather new activity, toxicity, or diagnosis and treatment data. Robotics
and AI-guided synthesis and data generation may help with these, though there is always a need for guidance in order
for the decision process not to be trivial (no new knowledge), wasteful (repeating known information), or picking up
erroneous bias.

A series of proposals has been made for evaluating generative methods such as GANs or RNNs which use
unsupervised ML such that a model learns from a dataset and can then produce data of a similar format: (1) Active mol-
ecules used to train the generative model should be made available in electronic form so readers may perform substruc-
ture and similarity searches and compare the output molecules with the training set. (2) Papers reporting AI-generated
molecules should contain a table showing the training-set molecule most similar to each generated molecule.
(3) Journals should use the same criteria for assessing the novelty of AI-generated molecules that are used to assess
molecules generated by a team of medicinal chemists.70 General criticism of ML reports include the lack of full disclo-
sure of algorithms, data, comparison to other ML, comparison to non-ML techniques, interpretability, robustness
against spurious results (learning the wrong lesson) and in the face of new data,205 as well as validation issues such as
lack of applicability domain considerations58,206 and possible scenarios where an ML model may not be provable to
solve a problem.207 Benchmarks have also been proposed for de novo design from deep learning and neural generative
models, such as GuacaMOL,208 for evaluating single and multiobjective tasks, chemical space coverage, ability to gener-
ate models, and fidelity to reproduce the property distribution of the training sets. In addition, ML can also suffer from
the same problem as other modeling methods to distinguish correlation from causation,8,209 and on the appropriate
training set cover of cases and their diversity in order to make accurate predictions for new cases. Further, tweaking
older algorithms may give as good results as newly developed ones, indicating that progress may not be as large as
hailed.210

Given that data are and will continue to remain the main cornerstone of data science, ML, and AI, it is inevitable
that the quality, diversity, accessibility, interpretability, and quantity of data will determine the quality of models, ML,
and AI for drug design. Growing in relevance are also data protection and ownership, which can provide as strong a
protection for a new treatment as a patent,211,212 as well as the ability to generate new data according to the distribution
of already available data and to balance or guide algorithms toward more relevant, interesting, discoverable chemical
space. Indeed, improvements may be more likely to be achieved by generating new data rather than small fiddling with
ML algorithms.

As with all other data science and modeling, several existential points for ML/AI may be addressed, such as data
sets being unavailable for comparison, or their bias, or being insufficiently large/diverse, or the train/test splits chosen
being irrelevant for prospective performance.213 In addition, prospective validation may still be insufficient to estimate
model performance if not enough in number, distribution, and without human intervention, as well as if a baseline
(advancement made over existing methods) is not properly chosen, optimized, or compared213; also, being models based
on data, the quality of the latter defines the upper limit of model performance (data quality must also be reported).213

Furthermore, the danger exists of irrelevant model endpoints or targets being chosen or not discussed in the context of
the actual model application213 (the endpoints for which there are data may not be relevant for the question or problem
to be solved). This may be a problem inherited from experimental data but gets transmitted into the model building
and decision making process leading to failure. Finally, there is always “survivor bias” in that retrospective evaluations
may provide some guidance, though they can be limited by already known information.213

Indeed, COVID-19 has shown the fragility of the world to jointly confront a deadly pandemic, raising concerns
about probable future pandemics such as avian flu, or others.87 A perspective on human-animal health also appears to
merit close interdisciplinary cooperation. Many calls from scientists and experts for research support and policies
directed toward improving worldwide preparedness for potential (even likely) pandemics were left unheeded. There is
still a high probability that another infectious pandemic occurs, including a more transmissible and/or more deadly
one.213
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Explainable AI is also making inroads, with interpretations becoming available for graphical explanation in terms
of specific positive and negative functional groups or molecular motifs that are considered relevant by a NN model
predicting drug interaction with cytochrome P450; specific atoms and vector weight contributions in graph con-
volutional methods; instance-based model interpretation; uncertainty estimations; as well as “verbal” explanations of
produced steps in an ML algorithm, that is, to synthesize a sentence using natural language that explains the decision
performed by the model, simultaneously training generators on large datasets of human-written explanations (though
these often need to be hand-coded before-hand), among others.214

Also needed is a critical approach to the congruence between in vitro and animal models of disease and the
corresponding human disease condition as a fundamental assumption of a lot of biomedical research.215 If the data gen-
erated has little or incomplete relevance to the disease, this fundamental error in experiments will be carried over into
data methods.

When dealing with infectious diseases, a great challenge is increasing the multidisciplinary efforts among groups
allowing the further control and eradication of NTDs. Interconnectedness may contribute to the dissemination of
NTDs, enhancing the infection rates, resistance to treatments, death, and disability associated with these illnesses. Cur-
rently, some of the most important challenges are drug and vaccine development and accessibility through collaborative
initiatives. In addition, limitations and availability of specific diagnostic systems remain priorities.

On the one hand, confirmatory diagnosis based on specific diagnostic biomarkers will be helpful for the application
of a suitable treatment against infections. NTDs are now targeted for elimination in endemic areas and an initiative of
mapping their burden should be addressed using adequate tools such as serology. Diagnosis may also become a chal-
lenge for clinicians from developed countries who are presently facing an increasing number of such infections.

Furthermore, there is a growing interest to apply in silico methods to develop future treatments against these dis-
eases. In fact, new drugs could be identified using a workflow that integrates chemoinformatic approaches, molecular
modeling, and theoretical affinity calculations, as well as validated and relevant in vitro assays. From a chemical per-
spective, structural and molecular patterns need to be explored taking advantage of the technology to generate more
efficient structure–activity-phenotype approaches and focusing on the capacity to predict and propose common targets
among these diseases.

The availability of the genome sequence of several pathogens and the subsequent advances in genomic applications
and in vivo luminescence-based imaging, might allow improving target-based drug discovery. We need to examine the
advantages and limitations of modern tools useful to detect and validate critical genes as drug targets with genomic
editing applications. Such functional genomics in combination with target validation through biochemical investigation
are valuable for the identification of new drugs.

On the other hand, an interesting strategy for new drugs against NTDs is drug repositioning. Since complex biologi-
cal systems are hard to model, the generation of false positives is common. This alternative needs to be improved. More-
over, obtaining models to predict ADMETox (Absorption, Distribution, Metabolism, Excretion, and Toxicology)
properties has become an important challenge. In this scenario, the training and generation of predictive models could
be more powerful and robust through the inclusion of inactive compounds and other “negative data.”

There are also challenges regarding vaccine discovery. Indeed, limitations and drawbacks of conventional adjuvants
have prompted the development of nano-carriers for vaccine delivery against infectious diseases including NTDs. It is
well known that the composition of nano-carriers and mostly the physicochemical properties of nanoparticles have
notable potential to overcome issues in vaccine development and to obtain desirable protection against NTDs and other
infections.

Finally, during and beyond the COVID-19 pandemic, another important challenge is to foster strategies supporting
the prevention and control of NTDs. We propose to maintain the nature of interdisciplinary research in relation to One
Health, to promote the co-production of knowledge about One Health and zoonotic diseases, and to explore areas of
potential synergies between the COVID-19 pandemic control efforts and NTD control and elimination programs.

8 | CONCLUSIONS AND FUTURE OUTLOOK

ML and AI technologies in drug discovery aim to learn complex design rules from chemists and accelerate decisions
and triaging of chemicals by chemists. Therefore, properly implemented they should create a virtuous cycle where
chemists can improve ML algorithms and in turn, receive better suggestions for synthesis and testing that cover wider
and more relevant chemical space.
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A Molecular Design Chemical Turing Test can therefore be proposed to be reached in the near future, whereby the
predictions or suggestions of compounds output from an ML are not distinguishable from those of a skilled medicinal
chemist (Figure 1). This would include considerations such as novelty of the compound, synthetic accessibility, ADME/
Tox and reactivity predictions, structural familiarity, chemical beauty or desirability.216 Also, experiment suggestion
and verification may be another application area of ML. Herein lays the greatest challenge for ML methods: provide the
just amount of familiarity and reasonable suggestions, while still proposing novelty and design ideas in chemical space
that have not been explored before and are worthy of developing through synthesis and testing.

Progress is being achieved in many areas of data science, ML, and AI for biomolecular sciences, drug discovery and
design, and also in their application to NTDs. However, challenges, limitations, and avenues for future improvement
are also becoming clear. In addition, advances in the field should be carefully assessed and explained to the specialist
and lay public in non-sensational terms (“AI creates drug” titles are not helpful since they are misleading and raise
incorrect assumptions—a drug should be an officially approved, safe, and guaranteed beneficial compound). The trans-
parency, accessibility, reusability, and availability of procedures and data, together with clear interpretations, applica-
bility domains, and benefit to the medical and chemical questions at hand are key to guarantee that AI and ML
approaches will continue to grow and find use in these fields. A strongly active supervision of assumptions and biases
in model construction and prediction must always be carried out, since AI and ML tend to very quickly pick up on
these and produce erroneous and distorted results. ML, AI, and data science are here to stay and help in drug design
and NTDs.
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